

POLYMER MODIFIED BITUMEN

Styrelf PMB PG GRADING

A technology of TotalEnergies

APPLICATIONS:

The STYRELF® PMB group of binders comprising a range of elastomerically modified bitumen. It is developed to provide high performance over a range of different applications and different conditions. Styrelf® PMB Bitumen is modified with elastomeric polymers using a TotalEnergies innovative cross-linking technology which gives them exceptional properties in terms of storage stability, cohesiveness, elongation capacity and resistance to aging. The Styrelf® PMB is homogenous and superior quality PMB; which enhances life of the pavement.

PRODUCT CERTIFICATIONS: Bureau of Indian Standards (BIS): CM/L-No-3269160 **AVAILABLE GRADES:**

- STYRELF® PMB 64-10 S/H/V/E
- STYRELF® PMB 70-10 S/H/V/E
- STYRELF® PMB 76-10 S/H/V/E
- STYRELF® PMB 82-10 S/H/V/E
- STYRELF® PMB 76-22 S/H/V/E

RENFFITS:

- Resistance at higher temperatures surface against rutting and ambient temperatures against fatigue.
- Higher resistance at low temperatures (-10°C) against thermal cracking because of viscoelastic nature.
- Better stripping resistance and ITSR (Indirect Tensile Strength Ratios).
- Better resistance against aging and oxidation compared to normal VG grades.
- Proven record of longer life of pavement.
- Saves natural resources and reduced pollution levels by deferring the frequency of overlays and period maintenance.
- Suitable as per Indian geography of moderate to extreme temperatures with lower susceptibility to temperature variation.
- Recommended for national/ state highways/ city roads/ fly overs/ round about etc. with overall improved mix performance.
- PMB grades available from selection criteria of standard (S) to extremely heavy (E) traffic condition as per IS 15462:2019.

PACKING: STYRELF® PMB is available in Bulk.

FOR TECHNICAL QUERIES, PLEASE CONTACT:

Dr. Pankaj Kumar Jain, Vice President - Marketing and Technical Mob: +91 8451804665 / Email: drpankajkumar.jain@itpl.net

TABLE 1 REQUIREMENTS OF POLYMER MODIFIED BITUMEN (PMB) IS 15462:2019

(Clause 6.5 and 9.5.3)

Characteristics	Grades and Requirements					Method of Test, Ref to	
	PMB 64-10	PMB 70-10	PMB 76-10	PMB 82-10	PMB 76-22	Annex	IS/ASTM
(A) Tests to be Carried out on Original Binder							
Softening Point (R & B), °C, Min.	60	65	70	80	75	_	IS 1205
Elastic recovery of half thread in ductilometer at 15 °C, Min.	70	70	70	85	80	Annex A	-
Flash Point, COC, °C, Min.	230	230	230	230	230	_	IS 1209
Viscosity at 150 °C, Pa.s, Max	1.2	1.2	1.2	1.6	1.5	_	ASTM D 4402
Complex modulus (G*) divided by Sin delta (G*Sin δ) as Min 1.0kPa,25mm Plate,1mm Gap, at 10 rad/s, at a temperature, °C, Min.	64	70	76	82	76	Annex B	_
Phase Angle (δ), Degree Max.	75	75	75	75	75	Annex B	-
Separation, difference in softening point (R & B), °C, Max	3	3	3	3	3	Annex C	_
FRAASS breaking point, °C, Max.	-10	-10	-10	-10	-22	_	IS 9381
B)Tests to be carried out on Rolling Thin Film Oven (RTFO) residue ²							
Loss in mass, %, Max.	1.0	1.0	1.0	1.0	1.0	-	IS 9382
Complex modulus (G*) divided by Sin delta (G*Sin δ) as Min 2.2kPa, 25mm Plate,1mm Gap, at 10 rad/s, at a temperature, °C	64	70	76	82	76	Annex B	_
MSCR TEST							
a) Standard Traffic (S) Jnr 3.2 Max 4.5 kPa-1, Jnrdiff Max75 percent Test Temperature, °C	64	70	76	82	76	Annex D	-
b) Heavy Traffic (H) Jnr 3.2 Max 2 kPa-1, Jnrdiff Max75 percent Test Temperature, °C	64	70	76	82	76	Annex D	-
c) Very Heavy Traffic (V) Jnr 3.2 Max 1 kPa-1, Jnrdiff Max75 percent Test Temperature, °C	64	70	76	82	76	Annex D	_
d) Extremely Heavy Traffic (E) Jnr 3.2 Max 0.5 kPa-1, Jnrdiff Max75 percent Test Temperature, °C	64	70	76	82	76	Annex D	-
C)Tests to be carried out on Pressure Vessel (PAV) residue ³							
Complex modulus (G*) multiplied by Sin delta (G*sin δ) as Max 6000 kPa, 8mm Plate, 2mm Gap, at 10 rad/s, at a temperature	31	34	37	40	31	Annex C	-

- 1) FRAASS Breaking Point only to be evaluated in case the project site has subzero temp conditions.
- 2) Method for Preparation of Rolling Thin Film Oven (RTFO) Residue is given in Annex E.
- 3) Method for Preparation of Pressure Aging Vessel (PAV) Residue is given in Annex F.

Procedure	Recommended Temperature Range
Mixing / Coating with Aggregates	170 - 185 °C
Laying of Mix	150-170 °C
Beginning of Compaction	Over 140 °C
End of Compaction	110-120 °C